Multiple Finite Energy Solutions of Critical Semilinear Field Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Nontrivial Solutions of Elliptic Semilinear Equations

We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.

متن کامل

Finite Energy Superluminal Solutions of Maxwell Equations

We exhibit exact finite energy superluminal solutions of Maxwell equations in vacuum. e-mail: [email protected] e-mail: [email protected] or [email protected] 1 Recently, some papers [1,2] appeared in the literature showing that in some hypotetical media there is the possibility for the existence of superluminal electromagnetic pulses (solutions of Maxwell equations) such their fronts tr...

متن کامل

Computation of radial solutions of semilinear equations

We express radial solutions of semilinear elliptic equations on Rn as convergent power series in r, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class of subcritical problems. We prove convergence of the power series by modifying the classical method of...

متن کامل

On approximate solutions of semilinear evolution equations

A general framework is presented to discuss the approximate solutions of an evolution equation in a Banach space, with a linear part generating a semigroup and a sufficiently smooth nonlinear part. A theorem is presented, allowing to infer from an approximate solution the existence of an exact solution. According to this theorem, the interval of existence of the exact solution and the distance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1995

ISSN: 0022-247X

DOI: 10.1006/jmaa.1995.1355